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Comparirron ie made between the general planetary character is t io  
of the ionorrphere dkrturbance & and the e n e r a  character is t ic  E of 
the gpojagaoth  bisturbane8,It is ehoun that there l e  a oorrclatioa between 
the active periods of goomawetic and ionospheric disturbances re f lec t ing  
the etructure  of the magnetic f ie ld  of the isolar corpuscular stream aad 
the force-free magnetie f ie ld .  The relationehip between L\Id and B  IS de- 
termined from the ioni ta t ion brlraoe equation for the e n t i r e  ionosphere 
th i ches8 .  A t  the isam t i m e ,  the dependenoe on E of exosphere and ionosphe- 
re temperature variation is obtained from s a t e l l i t e  deceleration. The quem- 

t i on  is diecrurstd of the nature of energy tranefer of the disturbanoe from 
the magnetosphere t o  the Ionosphere by me- of l o w  frequenoy hydromagnetia 
wave8 dissipating in the lonorrphere. 

* *  
l .-DeepIte the 6 i p i f i o a n t  advance8 in the ionosphere inrerrtiga- 

t ions  attained during the ICn period and the eubseqnent years, the nature 
of ionoepherb disturbance remain6 one of the l e a s t  studied questions, 
There is currently no doubt that  the corpuscular radiation of the Sun i6 
responeible for  the ionospheric disturbance. Meanwhile, It 58 clear  that 

the d i rec t  penetration of the "cold" solar plasma in to  the undisturbed 
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magnetic dipole f i e l d  2s imposs ib l e  even at high la t i tudes,  The d i f f i cu l ty  
in the  determination of the nature of ionosphere state of diertarbance is 
l inked with the r e l a t ive  local icat ion of the disturbance courser the pre- 
sen- of e f f ec t s  of ionieation decrease and increase in the F-ree-on (often 
concomitantlj observed at various l a t i t udes  and longitudes), and the still 
very scarce information on the character of the course of ionosphere dis- 
turbance in the  en t i r e  region above the Ip2-marlmtlm, where the aggregate 
electron thickness is a t  l e a s t  several  times greater than the underlging 
one. It 15eens t o  us, t h a t  i f  we remain within the bounds of ionosphere memu- 
rements onlyw t h e  ascertaining of the nature of the s t a t e  of ionosphere dis- 

turbance w i l l  be impossible. It is necessary t o  assume a spec i f ic  scheme of 
so l a r  geoeffectire f lux action upon the Ea r th ' s  raagnetoephere and t o  consi- 
der the effect of the  state of ionosphere disturbance as a par t  of the t o t a l  
transformation of the energy of s o l a r  corpuscular fluxes. 

2.-Ths met general approach for the solution of the problea of 
the nature of the state of ionospheric disturbance is the determination 
of the energy of the ionospheric storm, F i r s t  of a l l  i t  is necessary t o  

ascer ta in  what is by order of magnitude the energy of the ionosphertdis turb-  
anae and by what meam i t  is t r a n s f e d f r o m  the corpuscular stream t o  the 
ionosphere, There is ground t o  estimate tha t  only a r e l a t ive ly  s m a l l  frat- 

t ion of energy of geomagnetic variations is transformed in the ionosphere 

(c 1 + 10%). 
The first s t ep  toward the  energy analysis of t he  state of ionosphe- 

r i c  disturbance laey be the t ransi t ion from the standard loca l  (point)  des- 
c r ip t ion  of the etorm t o  the  two-dbensional (general planet-) considera- 
t ion  of the state of ionospheric disturbancew for  example at the Fpmaximum 

level.  It is evldent t h a t  the abaence 
during the state of ionospheric disturbance in the en t i r e  thickness of the 
ionosphere, from the lower boundary t o  -3 t 3.5 ICEr does not allow t o  
resolve quant i ta t ively the energy aspect of the s t a t e  of ionosphere disturb- 
ance. There I s ,  however, a good correlation between the aggregate ioniaation 
I4 of the  ageega te  thickness of the ionosphere and the electron concentra- 
t ion at the F2 - maximum l eve l  Cl]. The quantity I? w a s  obtained in c2J 
in qu ie t andd i sh rbed  days by the Fmaday effect at  radiosignal re f lec t ion  

of regular ionization measureaente 



3. 

from the surfaae of the Moon. According t o  these observations the correla- 
t ion  of A H  and A n ,  at  the s ta t ion Slau iB considered in C3J1 and tho t ime 
cour6e of parametere A f a ,  AN '(&fa)* and An, for disturbed period6 is compa- 

red also. Hero A j a  
during the disturbance6 of the c r i t i c a l  f requenq (In ro/s); ba and 4% 
are respectively the flactuations of the t o t a l  electron oontent in tha en- 
t i r e  i o n b e d  thiakne68 and of the electroa concentration at the F2-layer 
maximum l eve l  from the undieturbed conditionrr, It w a e  found that  %n tho 
first approximation all these parameters agree well  with one another and 
they m q  aharacterite not only the course of ionisation a t  the F2-maximttm 
l e v e l  but i n  tho ent i re  ionosphere thickness. We s h a l l  assume I n  the follo- 
wiag that in tho first approrimation the two-dimensional (general planetary) 
dtecription of Ionhat ion  at the  Fj-~naximm l eve l  characterices the t o t a l  
ionisation in the en t i re  atmosphere. 

denotes the deflection of the Pz-layer from the median 

3.- I n  order t o  obtain the general  planetary character is t ic  of 
the state of ionosphere disturbance,we constructed for a eerie6 of ionosphe- 
r i a  storme chart6 of Af& 
quencies of the F p l a y e r  according t o  the world net of ionospheric statioocr. 
One such chart ie presented in Fig, 1 for 1500 h, UT on 15 September 1957. 

deflectione from the median of c r i t i c a l  fre- 
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The consideration of hourly three-hour chart@ for iono6pheric atoms of 
the IOI- IBC allum t o  derive uonclasiona on the development of the etate 
of ionospheric dieturbanoo 
the general planet8x-y index O f  the state of ionospheric disturbanue intro- 
duced in C3.3. It is computed by the eorrelation 

Ah = z (Afd"2)'rnt, 

53. One ~ly ab0 obtain from these charta 

~- 
0 

d 

where is the 8 k t e  of Uirrturbanuo Index (hourly or three-hourly); 
ie the area of the i- th portion of ident ica l  values of Jfem 
ted eynoptieal ehart. The disturbaneo index is determined separately fo r  the ' 

region6 of overrated and underrated values of A f o i n .  Taking into accomnt 
the above- refeed  t o  remark on the correlation of the index & I d  w i t h  the 

t o t a l  i on i r i t i on  fr  we m8y assttw that  the index &Id characteriserr quall- 
tatire- the value of the general planetary energy of the s t a t e  of ionosphere 
disturbance. It ray be u t i l i s e d  for the analysis of the temporal course of 
ionosphere-d ie t t l rbae  M w e l l  ab f o r  the eomparlson with the energy characte- 
r i s t i c  of the geomagnetic storm. 

the staterr of ionospboriu and geomagnetio disturbdlncqwe plotted three-hourly 
world ayaoptie Qlrarte of A f a  
13- 17, 21- 24 Septwber 1957; 3- 7 September 1958; 25- 30 March, 4- 7 
September 1959. l3nring the caasidered disturbed periods the region of posit ive 
etate of disturbance aeeup%edaimignificant spot by comparison with the nega- 
t i v e  one8 that  b why the indber 
t i c  data. Given ia Fig. 2 l a  an example of aomparison of the indox with 

the enorg). Index E of the geomagnetiu disturbance f o r  the seater disturbanue 
of 3- 7 September 1958 [6J. From the oomparison of the curvem it raj be meen 
first of all that the autive periods of gemoagnetiu disturbanae (100 a b 0  mani- 

f e s t  (with a spoaifia 8hAff) in the ionoaphere dieturbanoe. The ionospheria 
storm ie coming through not only in the general var ia t ion of i o n b a t i o n  j u s t  
as does the geomagn.tio &om. There are1 alonghde with the last maximummnrat 

general plamtary maxlaa of variations (one or two ''main periods" of dieturb- 

ances) and mveral eeuond-rate m i d s a .  The shift bt between the geomagnetio 
and ionoepherie 

& S i  
on the  Indica- 

In  ardor t o  ascertain the pecul ia r i t i es  of the relationship between 

f o r  the following ionoepheriu storms t 1- 9, 

AI+ wore not compared with tho geoaagne- 

41, 

(aut i re  periods) w a s  found by epoch m p e r t p o & i t i o n  
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method (Fig. 3). The table belaw gives the correlation factors  B between 
geomagnetic and ionospheric indices of a&ive periods computed for varioue 

0.59f0,04 15 0,12 0,54f0,04 14 
O,72fO,@ 24 0.12 0,32f0,06 5 
O,@,tO.O3 23 0.20 0,29&0,06. 5 
0.73&0,03 '24 
0,71f0.03 24 0,32 O,llfo,O7 2 
0,63f0,04 16 

It follows from the table and Figs, 2,3 t h a t  : 

a) there ex i s t s  a r e a l  physical l i n k  between the separate active 
periods of the  general planetary and the geomagnetic s t a t e s  of disturbance. 
A t  the same t h e r  the dire& ref lect ion of separate active period8 of a 
geomagnetic storm (members of rlgeomagnetic storm family" C8, 93) by the 
corresponding periods of general planetary ionosphere e t a t e  of disturbance 
is essent ia l ;  

b) there exist6 a specific lag of ionosphere maxima r e l a t ive  t o  
the magnetic m a x i m a  (0.05 time fractions of t o t a l  storm, which corresponds 
t o  -2- 6 hours). 

The geomagnetic variations at time of magnetic storm should be 

viewed as the euperimposition of i r regular  Di-variatione and regular mean 



6 ,  

Dst, Sp-, P-variations. Comparison of magnetic variations P r e m e d  beyond 
the limits of the magnetosphere by Mariner-2 and on ground observatories 
[lo] hate shown that ,  apparent- the greater part of D i -  variations r e f l e c t  
the dis t r ibut ion of the magnetic f ie lds  of separate plaema elements of cor- 
puscular stre- having t h e i r  own magnetic f i e l d  of free-force s t ructure  
(W-elements) . The energy of Di-variations passes by the magnetosphere with- 

out subs t an t i a l  losses. A t  the same time the passage by the magnetosphere 
of a platma element with an s f f ee t i r e  magnetic dipole llloPaent H induces varf- 
a t ions of the current systems of remar variations (Det9 Sp) on account 
of induction. The par t  of motion energy of M-element plasma, transferred by 
mean6 of the magnetic f ie ld ,  remains in the magnetosphere and is par t i a l ly  
transferred t o  the ionosphere. I n  th i s  schese [ll], the t o t a l  energy enter- 
ing the ionosphere during the geomagnetic disturbaace, consti tutes a relat ive-  
ly small f ract ion ( 6 1 % )  of the t o t a l  energy of the geomagnetic disturbance, 
for the main part of enerm, having 
f o r  its heating and deformation, The shock wavestinducing this heating, 
d i s s i p a t e  t o  heights -/3.5&. Here, at boundary of abrupt density variation, 

-1 C U I  (Fig. 4 9  where , [PI ergc~n-~sec ' l  
is the power yielded at  dissipatSon of hydromagnetic waves) an i n s t a b i l i t y  
s e t s  in and magnetosonic and Alfven waves are generated, which disintegra- 
t i ng  in the ionosphere [l3-l5I1 induce its heating. The components of the 
"fami1y"of geomagnetio storm8 ref lec t  the re la t ive  closeness of the magneto- 
sphere of the  Earth t o  the chain of M-elemeats of the solar corpuscular 
stream (the main period of the storm is linked with the nearest passage of 
M-elements). The existence I n  the ionosphere 
disturbance of a correspondence t o  the com- 
ponents of the magnetic storm llfamily*l points 
t o  the f ac t  t ha t  the e n e r a  transfer from 
the magnetosphere t o  the ionosphere takes 

place by means of a re la t ive ly  tllow-inertia" 
mechanism, which re f lec ts ,  as in the geo- 

magnetic f i e ld ,  the spa t i a l  etructure of 
, 1 1 1 "  

M-elements of the s o l a r  corpuscular stream. 2 3 4 5 6 7 1 # 4  
lqhfi 9 Io I! I2 , 
4 5 , ,  6 7 @ %  

Thia  evidently does not exclude the presence 

49P ' -IO -9 -8 -7 

of disturbanoe CD,t (F2) , 8 (F2& constitutihg, 
Fig. 4 

entered the magnetosphere, is consumed 

e l c c 3 ,  cS11 e l  ano3, RA] cm sec 

M U  

; 

of i n e r t i a l  components of ionosphere s t a t e  

however, no more than 2O-gM of the t o t a l  enbrgy. 



4. - ?or the a i m s  of the present work,we ought t o  c l a r i f y  the rela- 
t ionship of t o t a l  ionisat ion variatione in the ionosphere with the geomagne- 
t i c  index ( f o r  example, 5 or  E), To tha t  e f f ec t  we  may assume in the  first 

apyroximation tha t  the Ionisation balance equation fs described during iono- 
sphere dieturbanees by the followiag expression $ 

d N e l d t = Q ( * )  - d e ' ,  * (f) 

where He is the t o t a l  electron content in the e n t i r e  thickness of the F-re- 
gion and high&, t o  the distance - 3  v 3.5 Q ( t )  is the number of ions 
and electrons forming at disturbanue in the whole thickness; a is the m e a n  
e f fec t ive  recombination coeff ic ient  for the e n t i r e  thickness, 

The mal transfer tern- div ( A S ) ,  conditioned by diffusion, a i r  

mafj8es s h i f t  etc,, has not been taken i n t o  account in (1). But, when writ ing 
t h e  equation for the entire thickness, t h i s  t e r m ,  leading only t o  r e d b t r i b u -  
t ion  of the exfeting ionization (which contributes t o  the formation o f  rea- 
pective m& in height), may be disregarded. In the general case, taking 
i n t o  account the possible photochemical reactions f o r  every l e v e l  of the iono- 
sphere [l2], one must not only write the term all2, accounting for the recom- 
bination proeeases a t  uollisione (of electrons,  ions, various types of atoms 
and moleculee), for which equality of both components' concentrations is 
assumed, but also the terms accounting f o r  the diffusion, However, for the 
description of i n t eg ra l  variations of the ionisat ion we 1i.nlj.t ourselves only 
t o  t h i s  recombination term. T h i s  can be done provided we take into account 
that  the in t eg ra l  ionieatfon is 

W e  postulate, i n  correspondence with Fig .4 ,  t ha t  N f < N =  N,,that is, 
the basic ionization is concentrated in the region I t o  the height 41 5OOlaa. 

Once these remarlre have been taken in to  account, we may consider the solut ion 
of (l), given in the work [16], under the condition tha t  Q (t) be a temporal 
function. It is w e l l  known t h a t  the equation (1) is in t h i s  case a Riccati- 
type equation, eo t h a t  the expression 

N=(?)'''-- aQ - 1 
a dt 4aQ' 

can be considered as being its solution w i t h  a sdl'ficient approximation. 



8. 

During geomagnetic disttrrbanoes the basic energy l ibera t ion  takes 

place in  the  considered region (1 in Fig. 4, curve P) ; t h i s  energy l ibera t ion  
is linked with the d i ~ e i p a t i o n  of magnetohydrodynamic waves proceeding from 
the magnetosphere. "he e f f ec t  of geomagnetic disturbance is manifest in the 

heating of the  ionosphere C17, 183 and i n  the var ia t ion of i ts  temperature 
regime. A t  the sam time 

a) the  effective reconbination coeff ic ient  varies CUI 
a 52: ao(T + AT)-', (4) 

b) the t o t a l  number of neutral  a tom,  which may be ionized in the 
en t i r e  thickness of the considered region (1) varies also. According t o  ex- 

perhaental data on satel l i te  deceleration [19,207 

NO No' (T + AT) 'h, (5) 
c )  the  faatbr  of photochemical reactions rate - k varies too  C l 2 j  

on account of the  change i n  the r e l a t ive  content of i n i t i a l  and final gas 

componeats.defining Q ( t ) .  The dependence of the fac tor  k on temperature 
according t o  CU, 17,181, fo r  example, is given by the correlat ion 

k = h ( T  + AT)'-Oa. ' (6) 

(7) 

In formulae (4) - (6) we took €or pT Ll8 - 233 
AT = Aap s A'E, 

where % is the amplitude character is t ic  of the geomagnetic disturbance, 
proportional t o  the energetic character is t ic  of E L93; the fac tor  A w 10. 
Subst i tut ing in (3) the expressions (4)- (71, we may obtain a f t e r  not too 
complex transformations the following semiempirical expression fo r  the varia- 
t ion of the t o t a l  ion isa t ion :  

AN = N- No = AN, + AN#. (8) 

Here # is the unperturbed value of the t o t a l  e lectron content in 
t he  region I for the value6 of the geomagnetic index E 3c 0 and dE / d t  = 0;  

AHl i s  the var ia t ion of the t o t a l  electron content at E# 0 and aE/dtm 0 

AN2 is  the ~ame at E # 0 The subdivision of AN i n t o  bR1 
and AN2 is  j u s t i f i e d  by the f ac t  t ha t ,  according t o  [9 , l3] ,  there e x i s t  
w i t h i n  the bounds of each term of "storm family" during geomagnetic disturb- 
ances periods with values Ewcons t  and period6 for which d F , / d t f O  ; they 

and dE / d t  & 0. 



differ mrphologically and apparent l j  a&m by t h e i r  character and tempo 
of energy ingress in to  the magnetosphere. The la t te r  Isr;lst ahso be ref lected 
in the ionosphere's state of disturbance. 

After eome simplifications the expression for (8) w i l l  be 

AN = C&'h f KE. (9) 

The dependence of the var ia t ions of the t o t a l  e lectron thickness 
on the  energy E of the geomagnetic s t a t e  of disturbance is plotted in 
Fig. 5. At great values of E and variatione of E ( I d E / d t > ) O )  t he  varia- 
t i ons  of the parmeters  Co and K ought t o  be taken i n t o  account. As 5.8 

shown by the observations of [l3], the index of E rises very s teeply within 
the bounds of each elements of "storm family" ( d E / d t > O )  , while the drop 
takes place r e l a t ive ly  smoothly. If w e  account for t h i s  when estimating the 

parameters Co and K in ( 9 ) (  we shall obtain the correlat ion of E and AB 
during one of the active disturbance periods, plot ted in Fig. 6,  The s h i f t  

of m a x i m a  and a more stretched course of A N  correspond t o  the observed 
correlat ion between the general planetary index of ionospheric disturbance 
&I and the geomagnetic s t a t e  of disturbance E (see Fig. 2). 

ANrdL E 

Fig. 5 Fig. 6 

5 , -  It w a 8  obtained in numeroue investigations of magnetohydrodyna- 
mic wares in the magnetosphere and ionosphere ( theore t ica l ly  and par t ly  cor- 
roborated by observations on AES Injun9 Pioneer and Cosmos), t h a t  at diesi-  
pation of low frequency magnetohydrodynamic waves a notable heating of the 
ionosphere i s  possible, A t  the same time, observation6 on AES Cosmos-3, 
Cosmos-5 [24], Injun-I11 E253 and on geophysical rocket6 E261 have shown 
tha t  there exists a f l u x  of re la t ive ly  energetio electrons (several  tens  kev) 
whicb may be responeibls f o r  the night and the dis turbed ionization of the  
ionosphere. Calculations have shown t h a t  a simple emergence of energetic 
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electrons from radiation bel t8  cannot ensure t h i s  observed f lux  of electrons, 
for  in t ha t  ca6e the radiation be l t s  would be emptied in a short  t i m e  without 
additional powerful booet, Without indulging fur ther  in to  t h i s  complex acce- 
le ra t ion  problem, having an in te res t  i n  i ts  own right, t h a t  is, heating of 
the magnetosphere plasma during geomagnetic disturbances, we s h a l l  note:  

a) The interaction of the Earth's mapetosphere periphery with the 
solar  corpuscular streana,consisting of eeparate plasma coaxids  (M-elements) 
w i t h  force-free magnetic f i e lds  [lo, 11, 231,naturally explains the deforma- 
t ion of the geomagnetic f i e l d  and the appearance of a system of waves (shock, 
automodel, Alfv4n and acoustic) dissipating in a different  fashion a t  various 
heights of the magnetosphere C14, 27 - 293. Thus, a t  great heights (z >-ME), 
where U A > U .  ( V A  and Ua being respectively the Alfvdn and sound veloci t ies)?  
the waves with frequencies 6 10 + 10 cps propagate without substant ia l  
damping, while the disdategration of Alfvbn waves at these heights has no 
time t o  take place. In the regions, where 
cps) w a r e 8  dissipate during a time >3Ua/vAm* . The disintegration of high-anrpli- 
tnde hydromagnetic naves(&lOy), emerging as a consequence of i n s t ab i l i t y  during 
geomagnetic disturbance6 a t  heights of 2.5 + 4.5 BE , takes place rela- 
t ively dense region8 (at height6 1 500 km with maximum near - 300 km (Fig. 6). 
The energy, tbenliberated,  is suff ic ient  for heating the ionosphere [15, 283, 
which, as w a s  shown above, may sa t i s fac tor i ly  explain the general decrease 
of the ionisation daring the  active periods of geomagnetic disturbance. 

2 

the high-frequency ( O ~ W  

2.- During gaomagnetic storms the magnetic f i e l d  in the magnetosphere 
represents, according t o  the adopted scheme i n  [lo, 11,303, the r ec to r i a l  sum 
of the E a r t h ' s  dipole f i e ld ,  t he  f i e ld  of Di-variations (magnetio f i e l d  ref- 
lec t ing  the dis t r ibut ion of the force-free magnetic f i e l d  of f lur te  M-els- 
ments and the f i e lds  of regular variations (Dst, S 1, The latter, as pointed 
out above, consti tute the consequence of induction e f fec t  in the magnetosphe- 
r e  at  passage of the effect ive dipole f i e l d  of flu's M-elements. Therefore, 
the variations of the magnetosphere's f i e l d  w i l l  be essent ia l ly  asymmetrical. 
Possible i n  t h i s  f i e l d  a r e r a )  the solar  plasma inject ion [ll], b) the sub- 
s t a n t i a l  acceleration of protons, and part icular ly  of electrons of magneto- 
sphere plasma t o  energy of several tens of kev, provided the time of notsymmet- 
r i c  f i e l d  variations is greater than t h a t  of longitudinal d r i f t  of e led rope  
or  protons (0.55 + 1 hour). 

P 



This condition is fu l f i l l ed ,  as a rule, during the t i m e  of geo- 

magnetic disturbances, SO t h a t  the mechanism of adiabatic and betatron 
acceleration of electrons i n  the magnetosphere, indicated by Parker [32], 
becomes possible. The fluxes of energetic electrone, observed in the iono- 
sphere, m a y  ae w e l l  be explained by the  f l u  of accelerated electrons at 
adiabatic acceleration, descendfng along the  f ie ld ,  88 by the in jec t ion  
of solar plamaa i n t o  a nonsymmetrically d is tor ted  f ie ld .  The forsner may be 
respoasibb for the ionization increase during disturbances. The ionisation, 
r e a l l y  observed a t  various la t i tudes  during ionosphere disturbances, is a 
r e s u l t  of s i m l t a e o o s  effect of both factors-  additional ionization from 
the f lux  of energetic electrone and the intensive heating of the entire 
ionosphere a t  disaipation of hydromagnetic waves. During major disturbances 
and i n  the active periods of geomagnetic ac t iv i ty ,  the e f fec t  of ionosphere 
i n i t i a l  heating preva5l8 at  middle and higher la t i tudes.  
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